
16thCentury Latin Printed Brevigraphs
in Unicode—aComputer Resource
Janusz S. Bień

Abstract. A public git repository is presented. It contains some brevigraphs, i.e.,
specific forms of scribal abbreviations. The brevigraphs are encoded in Unicode.
They are organized into two indexes to the scans in the DjVu format: one of the
abbreviated word forms and the other one inverted, i.e., of the expanded word
forms. From the technical point of view the indexes are just simple CSV files.
For browsing the indexes djview4poliqarp program is recommended.

1. Introduction

The content of a public git repository1 is presented, cf. also Fig. 1. The
repository contains the brevigraphs, i.e., a specific forms of scribal ab-
breviations (cf., e.g., Honkapohja 2013) found in the two editions of
Stanisław Zaborowski’s Latin treatise on Polish spelling entitled Or-
tographia seu modus recte scribendi et legendi Polonicum idioma quam utilissimus.

Using git and GitHub for this purpose has several advantages. The
interested reader can find easily on the Internet their detailed presen-
tations, I will mention here only the easiness of reporting mistakes and
proposing corrections.

The brevigraphs are encoded in Unicode. The standard is not ideal
(cf., e.g., Haralambous 2002) but we have to live with it. When needed
the private characters are used which were proposed by the recommen-
dations of Medieval Unicode Font Initiative added to JunicodeTwo font
courtesy of its author Peter S. Baker. The meaning and some other as-
pects of the brevigraphs are discussed elsewhere, namely in the paper
(Janusz S. Bień, 2021).

The resource seems to be the very first computational description of
the brevigraphs used in printed texts. The primary reference for bre-
vigraphs and other forms of scribal abbreviations is Capelli’s Lexicon ab-
breviaturarum. Dizionario di abbreviature latine ed italiane first published in

Janusz S. Bień 0000-0001-5006-8183
retired professor, University of Warsaw, Poland E-mail: jsbien@mimuw.edu.pl

1. https://github.com/jsbien/Zaborowski-index4djview

Y. Haralambous (Ed.), Grapholinguistics in the 21st Century 2022. Proceedings
Grapholinguistics and Its Applications (ISSN: 2681-8566, e-ISSN: 2534-5192), Vol. 9.
Fluxus Editions, Brest, 2024, pp. 299–314. https://doi.org/10.36824/2022-graf-bien
ISBN: 978-2-487055-04-9, e-ISBN: 978-2-487055-05-6



300 Janusz S. Bień

Figure 1. Wiki for the repository

1899 (Cappelli, 1889) and available now also as Capelli Online2. The work
however describes the handwritten abbreviation, represented by scan
snippets, which quite often have no printed equivalents. It’s worth not-
ing that the online version was created by crowdsourcing (the call for
volunteers was announced in 20153) and the results are freely available
also in the source form4.

The very first computational approach to Latin abbreviation seems to
be Olaf Pluta’s Abbreviationes™: A Database of Medieval Latin Abbre-
viations awarded the 1993 German-Austrian Academic Software Prize
(Deutsch-Österreichischer Hochschul-Software-Preis) for outstanding
software in the humanities5; you can find numerous screenshots in
(Pluta, 1995). In 2015 a new version, called Abbreviationes™ Profes-
sional, was released. It is said that it

provides a standardized representation of medieval Latin abbreviations by
using a Unicode-compliant font (Junicode, created by Peter S. Baker, Uni-
versity of Virginia) which follows the character recommendations of MUFI
(Medieval Unicode Font Initiative).

2. https://www.adfontes.uzh.ch/en/ressourcen/abkuerzungen/cappelli-online

3. https://web.archive.org/web/20171015135838/http://www.adfontes.uzh.ch/
cappelli/index.php

4. https://data.europa.eu/data/datasets/adfontes-cappelli-abbreviaturarum-openglam

5. https://olafpluta.net/software/software.html



16th century Latin printed brevigraphs in Unicode 301

To use the software a paid license is required, the price ranges from 99
€ for a single fixed IPv4 address to 1199 € for a class B subnet. A trial
access is available for free but I haven’t used it as I have no intention
to purchase this product. The software is mentioned in a chapter of The
Oxford Handbook of Latin Palaeography (Pluta, 2020).

According to Honkapohja (2021, p. 27) the ORIFLAMMS project
made lists of medieval manuscript abbreviations available on GitHub,
but I was unable to locate it. Anyway the paper mentions several
projects which encode abbreviations and their expansions in the text
corpora, but all of them seem to represent manuscripts.

The repository presented here is an open resource. Everybody can
use it for any pupose, modify it and distribute modified version etc.

2. Printed Texts

The basic notion of the traditional (letterpress) printing is type or sort
(both names are confusing because of the ambiguity), i.e., a piece of
metal with so called face with the (reversed) image of the character to be
printed with some appropriate ink on the paper, cf. Fig. 2. Even a more
basic notion is the matrix (a mould) used to cast the types/sorts. For
the purpose of encoding we can assume that all types/sorts casted from
a single matrix are identical. An image of a type/sort on paper I propose
to call typoglyph; even in a single document they can differ because,
e.g., of some paper glitch. A generalized, by ignoring such differences,
typoglyphs I propose to call typographical characters, in short typochars
(Janusz S. Bień, 2016–2017 [2019]).

Types/sorts has been kept in the compartments of typecases6.
Following (André and Jimenes 2013) the types/sorts put into a single

compartment are considered an abstract typème. For different type sizes
different typecases has been used, so the size is not a property of typème,
and the same rule holds for some other properties. On the other hand
a character with accents is considered a single typème, because it is the
image of the face of a single type/sort. The notion of typographical
character mentioned above has been inspired by the notion of typème.

6. You can find different cases and their lays/arrangements, e.g., at http://www.
alembicpress.co.uk/Alembicprs/SELCASE.HTM.



302 Janusz S. Bień

Figure 2. A ligature type and its printed image (Daniel Ullrich, Threedots, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=855947)

3. Unicode

3.1. Basics

Let’s start this sectionwith a quote from (Korpela, 2006, p. xii): Character
code problems are intrinsically difficult, and very widely misunderstood.

To make a long story short, Unicode characters has only loose rela-
tion to the characters we use in print or in writing (sometimes called
user-perceived characters). One reason is that characters with one lub
more diacritical signs are in principle represented as a base character
and the combining characters representing the diacritics; a limited num-
ber of characters are available as precomposed ones. In consequence
a printed character can be represented by several equivalent Unicode
character sequences. Such a sequence is technically called an extended
graphemic cluster, which in my opinion is a misnomer (a very limited
number of these sequences are really graphemic clusters). There is no
official Unicode terms for the abstraction class of a character object inde-
pendently of its representation. I propose textel (a text element). How-
ever it seems that extended graphemic clusters acquire double mean-
ing: of a specific sequence and of a representation independent object.
This is how I understand its use in the SWIFT programming, cf. also the
whole thread on the Unicode mailing list7.

3.2. Extending Unicode

In theory Unicode can be easily extended by interested communities by
agreeing on the use of private characters. Medieval Unicode Font Ini-
tiative mentioned above is a good example. However the private char-
acters are crippled because they are missing the properties provided by

7. https://www.unicode.org/mail-arch/unicode-ml/y2016-m09/0035.html



16th century Latin printed brevigraphs in Unicode 303

the Unicode Character Database8. Even if the properties are provided9,
it may be impossible or prohibitively difficult to make programs to use
them; Emacs seem to be an exception10.

One of the main Unicode design principle is the distinction between
the characters (some abstract objects) and glyphs (their visual images).
Another important principle is that Unicode encodes characters, not
glyphs. Unfortunately the difference is not always clear.

Let us consider an example. In (Everson et al., 2006, pp. 6, 22, 30, 34,
38) a character was proposed which was used in Latin as an abbreviation
for el, ul and vel and in Norse as an abbreviation for eða, el, æl and al. The
glyphs of this character are presented in Fig. 3. One of them was used
as the so called representative glyph in the standard (5.1.0 introduced in
2008) and it served also as the inspiration for the character name.

Figure 3. Different glyphs of U+A749 latin small letter lwith high stroke

Theoretically there is a method to circumvent these principles by us-
ing so called character variation sequences.

The Unicode FAQ11 contains the following explanation:

Every character in Unicode can be displayed with many different glyphs:
An “a” can be displayed with or without the top “hook” (a versus ɑ). A not-
equals sign (≠) can be displayed with an angled or vertical slash, and so on.

In some situations, however, it is important to indicate in plain text that
only a subset of the possible glyphs for a character should be used, such as a
vertical slash for ≠. The variation sequences are a standardized mechanism
for requesting such an appearance.

The following FAQ fragment looks even as a recommendation to use
variation sequences:

Q: I’m proposing an addition to a historic script that is a variant of an ex-
isting character. Should I propose it as a new character or as a new variation
sequence?

A: Variation sequences provide a means to specify a certain significant
glyphic variation of a character, without encoding each variation as a sepa-
rate character. This is particularly useful whenever such distinction is not
universally necessary.

8. Cf., e.g., https://util.unicode.org/UnicodeJsps/character.jsp?a=A749&B1=Show

9. Cf., e.g., http://www.kreativekorp.com/charset/PUADATA/
10. https://debbugs.gnu.org/cgi/bugreport.cgi?bug=32599
11. http://unicode.org/faq/vs.html



304 Janusz S. Bień

Because the character itself is part of the variation sequence, one should be
able to search and find all the instances of that particular character, indepen-
dent of variation in its appearance, a task which would be more complicated
if the variants were encoded as separate characters. If you can replace the
variant by the existing character without significantly distorting the content
of the text, then a variation sequence is the appropriate way to represent the
variant, and you should propose your addition as a variation sequence.

For historic scripts, the variation sequence provides a useful tool, because
it can show mistaken or nonce glyphs and relate them to the base character.
It can also be used to reflect the views of scholars, who may see the relation
between the glyphs and base characters differently. Also, new variation se-
quences can be added for new variant appearances (and their relation to the
base characters) as more evidence is discovered.

The problem is that every usage of variation sequences has to be offi-
cially registered by the Unicode Consortium. The only proposal related
to Latin scripts I’m aware of, namely (Pentzlin, 2011), has been discussed
by the Unicode Technical Committee on a meeting in February 2011 but
no action was taken (I’m obliged to the author of the proposal for pro-
viding this information). The fact does not encourage to submit new
proposals.

Several year ago the word Emojigeddon was coined, which refers to the
flood of emojis accepted into Unicode12 while the original goals of the
standard seem to be neglected13. The emojis paved the way for the in-
tensive use of the so called tag characters, e.g., the flag of Scotland is
represented as the sequence black flag, tag latin small letter g,
tag latin small letter b, tag latin small letter s, tag latin
small letter c, tag latin small letter t, cancel tag14. Tags have
no glyphs, but for the editing and documentation purposes they can be
visualised (see below).

In March 2022 Margaret Kibi (marrus-sh) proposed to use tags in-
stead of the variant sequences in the Junicode font15. The proposal was
supported by several other font users and accepted by the font author.
You can find a non-trivial example of this technique in (Janusz S. Bień,
2022b). I hope it will become a kind of a de facto standard.

In consequence the important glyph variant of the character dis-
cussed above, namely one used in particular in (Balbi, 1460), cf. Fig. 4,
which was a book probably typeset by Gutenberg himself, can be en-

12. Cf., e.g., https://www.buzzfeednews.com/article/charliewarzel/inside-emojiged
don-the-fight-over-the-future-of-the-unicode
13. Cf., e.g., https://www.explainxkcd.com/wiki/index.php/1953:_The_History_of_

Unicode
14. Cf., e.g., https://emojipedia.org/flag-scotland/
15. https://github.com/psb1558/Junicode-font/discussions/122\

#discussioncomment-2416880



16th century Latin printed brevigraphs in Unicode 305

Figure 4. Giovanni Balbi Catholicon, 1460 r

coded as lsf yielding (it can be named l with high stroke ending with
flourish).

Moreover latin small letter l with high stroke is obviously
just a variant of latin small letter l, the knowledge of this fact can
be useful, e.g., for searching and indexing; it is quite surprising the stan-
dard does not provide this information, at least not explicitely. We can
now express it formally by encoding as lsh. You can find more ex-
amples in (Baker, 2022).

I propose to call textons the instances of Unicode characters which are
not used in a self-containedway but are just elements of some sequences.
The term was introduced with a slightly different meaning in (Janusz S.
Bień, 2016).

3.3. Examples of Encoding Problems

Let’s have now a look at a specific encoding problem described already
in (Janusz S. Bień, 2021).

At first glance the character for el seen on Fig. 5 is not available in
Unicode.

Figure 5. From the left: vel, vel, regula, populus (Zaborowski’s treatise)

However if you search thoroughly the character proposals stored in
the Unicode archive, you will find the proposal mentioned above and
learn that this is just a different glyph for U+A749 latin small letter l
with high stroke. It’s a pity you cannot find this information directly
in the standard.

Let’s now have a look at another example, namely the abbreviations
of aliter and similiter, cf. Fig. 6; they come from a recently digitized
Zaborowski’s treatise edition which has not yet an index, cf. (Janusz S.
Bień, 2022a).

The diacritic over t looks like a comma. However the character
U+0313 combining comma above present in Unicode from its beginning



306 Janusz S. Bień

Figure 6. From the left: aliter, similiter (Zaborowski’s treatise)

has a different purpose: principally it’s the Greek psili (smooth breathing
mark), although it has some additional applications.

Let us note that Medieval Unicode Font Initiative is not bound by
the Unicode rule to encode only characters, not glyphs. So although
the Unicode standard has only U+035B combining zigzag above, in the
MUFI specification we can find also U+F1C7 combining abbreviation
mark zigzag above angle form and U+F1C8 combining abbreviation
mark zigzag above curly form. So it seems the abbreviations on the
Fig. 6 can be encoded as alit and mılıt; the shapes are not identical to
those in the scan, but the distinction is preserved. If you want to avoid
the private characters for the reasons described earlier, with the Juni-
code font you can encode them also as ◌͛ cu and ◌͛ an.

The last example, cf. Fig. 7, comes again from (Janusz S. Bień, 2021).

Figure 7. From the left: quam, tanquam, nunquam, quicquam, quamquam
(Zaborowski’s treatise)

There is no doubt about the characters U+A76B latin small letter
et added to the standard (together with U+A76A latin capital letter
et) in 2008 (version 5.1.0.) following the letter q, and the ligature U+E8BF
latin small letter q ligated with final et, a private character
present in the MUFI recommendation (Haugen, 2015, p. 79) since ver-
sion 2. There is also no doubt about U+A757 latin small letter q
with stroke through descender added to the standard (together
with U+A756 latin capital letter q with stroke through descen-
der) in 2008 (version 5.1.0).

What is problematic here is the encoding of the diacritics. In tan-
quam we have a straight line which can be encoded as U+0305 combin-
ing overline or U+0304 combining macron. In nunquam the line is not
quite straight, is this the same diacritics as in nunquam or perhaps a form
of tilde (U+0303 combining tilde)? The words quam, tanquam, and nun-
quam contain also a diacritic similar to diaeresis, but the dots are more
or less connected, is this accidential or intentional? At present I’m not
sure what the answer is.



16th century Latin printed brevigraphs in Unicode 307

As for quicquam, we can assume that latin small letter et repre-
sents m (it used to be written vertically to save the space), hence the
meaning of the diacritic is ua. In the Unicode archive we can find the
document (Everson et al., 2006, s. 8) stating that ua can be abbreviated
by U+1DD3 combining latin small letter flattened open a above.
Although the shape of this character in the document is not identical to
our example, it seems reasonable to assume this is just a different glyph.
This interpretation seem also be confirmed by Erin Blake16, who calls
the character jagged horizontal line above letter. The same diacritic sign oc-
curs twice in an abbreviation, which means quamquam; this and other
readings quoted here come from (Urbańczyk, 1983, p. 90).

Let us hope that analysing more texts in the future will allow to for-
mulate the definite answers to the questions raised above.

4. DjVu

The format was developed in 1999-2001 for serving scans and underly-
ing text layer over Internet. It’s acceptancewas hampered by the patents
(looks like most of them expired by now), nevertheless it was quite pop-
ular in digital libraries, especially in Poland. The open source viewer
djview417 is still actively maintained, cf., e.g., Fig. 8. The DjVu plugin
for browser used the now not supported NPAPI interface and no equiv-
alently convenient tool was created. However in my opinion DjVu is
still a very good format for scanned documents used offline. One of its
advantages is the simplicity of the format.

The DjVuLibre18 library provides various tools, in particular djvused
used for operations on the text layer, annotations and metadata.

A typical DjVu document internally contains a dictionary of glyphs
(actually connected components), which can be viewed with the
djview4shapes program19, cf. Fig. 9. Another tool for visualisation of con-
nected components dictionaries is Alexander Trufanov’s djvudict pro-
gram20.

The dictionary of glyphs can be created in particular with minidjvu-
mod21 and minidjvu-mod-gui22.

16. https://collation.folger.edu/2021/09/brevigraphs/
17. http://djvu.sourceforge.net/djview4.html
18. http://djvu.sourceforge.net/
19. https://bitbucket.org/mrudolf/djview-shapes/
20. https://github.com/trufanov-nok/djvudict.git
21. https://github.com/trufanov-nok/minidjvu-mod
22. https://github.com/trufanov-nok/minidjvu-mod-gui



308 Janusz S. Bień

Figure 8. djview4: the scan and the underlying text

Looking at the glyph dictionary is the quickest way to get an
overview of glyphs used in a text which can help to make the right en-
coding decisions.

5. Indexes to DjVu Documents

The indexed discussed here has been designed by Janusz S. Bień and
implemented by Michał Rudolf in the djview4poliqarp23. From the tech-
nical point of view they are just simple CSV files (with the semicolon
as the separator). They can be processed in any way a user wishes
(we fully agree with Peter Robinson n.d.), but they are most conve-
niently browsed and edited with the djview4poliqarp program mentioned
above. The programwas originally designed to facilitate creating graph-
ical concordances for the corpora search results, in particular for the

23. https://bitbucket.org/mrudolf/djview-poliqarp/



16th century Latin printed brevigraphs in Unicode 309

Figure 9. djview-shapes: similar shapes grouped together

so called IMPACT Polish Ground Truth corpus24, cf., e.g., (Janusz S.
Bień, 2014), but was later adapted to handle also offline indexes, cf., e.g.,
(Janusz S Bień, 2018a) and (Janusz S. Bień, 2018b), to both online and
offline DjVu documents.

The brevigraph indexes discussed here are based on the two editions
of Zaborowski’s treatise.

The first edition called here edition A is available for download from
Małopolska Digital Library25 in the so called unbundled DjVu format.
After removing the covers and empty pages and converting it to the
bundled (single file) form it is available in the repository as Zaborowski-
MBC.djvu.

The second edition called here edition B is available in Polona digital
library26 as graphic files served according to IIIF standard which can be
downloaded individually as JPG or TIFF and as PDF as the whole. They
have been downloaded as JPG and converted to DjVu with didjvu27; title
page and empty pages were also skipped. The result is available in the
repository as Zaborowski-Polona.djvu.

Both documents have been supplemented with the metadata describ-
ing their origin and the outlines containing traditional page identifiers

24. https://szukajwslownikach.uw.edu.pl

25. http://mbc.malopolska.pl/publication/89609

26. https://polona.pl/item/73794330

27. http://jwilk.net/software/didjvu



310 Janusz S. Bień

(the identification of the sheet, the numer of the leaf in the sheet, the
side recto or verso).

The best way to view them is to download them and use djview4 pro-
gram mentioned earlier.

The indexes are named respectively ZaborowskiA.cvs and ZaborowskiB.csv.
We called them the primary indexes.

Every line of an index file consists of three or four fields:

1. The entry used for sorting and incremental search. The entries in
the primary indexes consist of the abbreviations, e.g., `mãibꝰ'.

2. The reference to the relevant image fragment in the form used by
djview4 viewer mentioned earlier, namely an Universal Resource Lo-
cator. In the indexes discussed here the scheme and authority parts
are absent, and the path limited to the file names, this means in prac-
tise that djview4poliqarp has to be called with the index directory as the
default one. The fragment part is also missing, and the query part
contains the dimensions and the coordinates of the image fragment
in the djview4 specific form; it can contain also the specification of a
color used for highlighting. This field is created with an appropri-
ate tool. In particular djview4 and djview4poliqarp can be used for this
purpose. Here is an example:

Zaborowski_MBC.djvu?djvuopts=&highlight=561,954,133,58&page=1

3. A description: a text displayed for the current entry in a small win-
dow under the index.

4. An optional comment displayed after the entry. In the primary index
this is the abbreviated word, proceeded by reference mark for a
more distinctive display, e.g., ※ manibus.

The entries can be displayed in several orders:

– File order, in practise it means the order of the brevigraphs oc-
curences in the treatise.

– Alphabetic order word by word, i.e., spaces and hyphens are relevant.
– Alphabetic order letter by letter, i.e., spaces and hyphens are ignored.
– a tergo (the reverse alphabetical order).

The indexes contain also some additional auxiliary entries.
First of all there are entries describing words which are not abbrevia-

tions but are interesting for other reasons; in particular, they document
the usage of latin small letter et as a final ‘m’.

Secondly, they are entries allowing, when displaying an index in the
file order, to move quickly to a specific page or, when both A and B in-
dexes are diplayed together, to the beginning of an edition.

As we have seen already, interpreting printed type as Unicode char-
acters is not always obvious. For verification purposes the histograms



16th century Latin printed brevigraphs in Unicode 311

of the Unicode characters used in the abbreviations in each edition are
also provided in the repository. The have been created with the unihistext
program28.

There are also the secondary indexes named respectively Zaborow-
skiAi.cvs and ZaborowskiBi.csv (‘i’ meaning ‘inverted’). In the secondary
indexes the fields 1 and 4 are exchanged, so the abbreviated words are
now the entries. They are generated from the primary ones with a sed
one-liner program.

Loading both indexes and sorting the joined index in an alphabetic
order allows to compare how the words were abbreviated in the A and B
editions.

The transcription, based on the one provided by Urbańczyk (1983),
has been synchronized with the scans with the use of Transkribus29. The
results has been used as the basis for indexes, which were later verified
and extensively modified. These changes has not been applied yet to the
texts stored in the Transkribus system.

In djview4poliqarp program you can use the left panel for displaying the
entries you find interesting, cf. Fig. 10 and Fig. 11.

Figure 10. A primary index

28. https://bitbucket.org/jsbien/unihistext/

29. https://readcoop.eu/transkribus/



312 Janusz S. Bień

Figure 11. A secondary index

As it was mentioned before, the indexes can have other uses beside
being browsed. For example, it is quite easy to convert, with just some
regular expressions, an index into the djvused input to create a DjVu doc-
ument where abbreviations are somehow marked and the expansions
provided as tooltips, cf. Fig. 12.

6. Final Remarks
The paper (Honkapohja, 2021) entitled Digital Approaches to Manuscript Ab-
breviations: Where AreWe at the Beginning of the 2020s? was alreadymentioned
earlier. It’s main focus is the place of abbreviations in the theory of
writing systems, but it contains also a section concerning computer en-
coding of abbreviations and/or their expansions. With the exception of
some early corpora, all the projects mentioned encode the texts in XML,
most of them following the recommendations of Text Encoding Initia-
tive30, which discusses abbreviations in section 3.6.531.

Perhaps in some future Zaborowski’s treatise will be also encoded in
TEI XML, but for the present purpose the tools and resources described
in the paper are fully adequate.

30. https://tei-c.org/
31. https://tei-c.org/release/doc/tei-p5-doc/en/html/CO.html#CONAAB



16th century Latin printed brevigraphs in Unicode 313

Figure 12. A tooltip with the expansion of mãibꝰ abbreviation

References

André, Jacques and Rémi Jimenes (2013). “Transcription et codage des
imprimés de la Renaissance.” In: Revue des Sciences et Technologies de
l’Information—Série Document Numérique 16.3, pp. 113–139.

Baker, Peter S. (2022). Junicode—the font for medievalists. Specimens and user
manual for version 2. https://github.com/psb1558/Junicode-font.

Balbi, Giovanni (1460). Catholicon. https://www.loc.gov/item/47043559/.
Mainz.

Bień, Janusz S (2018a). “Elektroniczny indeks do słownika Lindego [An
electronic index to Linde’s dictionary].” In: Kwartalnik Językoznawczy
2015.3, pp. 1–19.

(2018b). “Elektroniczne indeksy fiszek słownikowych [Elec-
tronic indexes for dictionary fiches].” In: Kwartalnik Językoznawczy 16.2,
pp. 16–27.

(2022a). “Polskie litery w traktacie Stanisława Zaborowskiego.
Litera A i pochodne [Polish letters in Stanisław Zaborowski’s treatise.
Letter A and derivates].” In: Poznański Półrocznik Językoznawczy 1, pp. 1–
20.

(2016). “Problemy kodowania znaków w korpusach histo-
rycznych [Character encoding problems in historical corpora].”
In: Semantyka a konfrontacja językowa. Ed. by Danuta Roszko and



314 Janusz S. Bień

Joanna Satoła-Staśkowiak. Vol. 5. Warszawa: Instytut Slawistyki
PAN, pp. 67–76.

Bień, Janusz S. (2016–2017 [2019]). “Repertuar znaków piśmiennych—
problemy i perspektywy [Towards an electronic repertoire of ba-
sic text elements].” In: Kwartalnik Językoznawczy 2016.2016/4-2017/1,
pp. 1–18.

(2022b). “Representating Parkosz’s alphabet in the Junicode
font.” In: TUGboat 43.3, pp. 247–251.

(2014). “The IMPACT project Polish Ground-Truth texts as a
DjVu corpus.” In: Cognitive Studies | Études Cognitives 14, pp. 75–84.

(2021). “Traktat Stanisława Zaborowskiego i skróty brachy-
graficzne [Scribal abbreviations in Zaborowski’s treatise].” In: Poz-
nański Półrocznik Językoznawczy 1 (30), pp. 1–42.

Cappelli, Adriano (1889). Lexicon abbreviaturarum. Dizionario di abbreviature
latine ed italiane. Milan: Ulrico Hoepli.

Everson, Michael et al. (2006). Proposal to add medievalist characters to the
UCS. Tech. rep. N3027. ISO/IEC JTC1/SC2/WG2.

Haralambous, Yannis (2002). “Unicode et typographie: un amour im-
possible.” In: Document numérique 6.3, pp. 105–137.

Haugen, Odd Einar, ed. (2015). MUFI character recommendation version 4.0.
http://hdl.handle.net/1956/10699. Medieval Unicode Font Initiative.

Honkapohja, Alpo (2013). “Manuscript abbreviations in Latin and Eng-
lish: History, typologies and how to tackle them in encoding.” In:
Studies in Variation, Contacts and Change in English. Principles and Practices
for the Digital Editing and Annotation of Diachronic Data. Vol. 14. https://
varieng.helsinki.fi/series/volumes/14/honkapohja/.

(July 2021). “Digital Approaches to Manuscript Abbreviations:
Where Are We at the Beginning of the 2020s?” In: Digital Medievalist
14.

Korpela, Jukka K. (Jan. 2006).Unicode Explained. Sebastopol, CA: O’Reilly.
Pentzlin, Karl (2011). Proposal to add Variation Sequences for Latin and Cyrillic

letters. Tech. rep. L2/11-059. ISO/IEC JTC1/SC2/WG2 and UTC.
Pluta, Olaf (1995). Abbreviationes, the first electronic dictionary of medieval Latin

abbreviations.
(2020). “Abbreviations.” In: The Oxford Handbook of Latin Palaeog-

raphy. Ed. by Frank T. Coulson and Robert G. Babcock. Oxford: Ox-
ford University Press, pp. 9–24.

Robinson, Peter (n.d.). “Why Interfaces Do Not and Should Not Mat-
ter for Scholarly Digital Editions.” https : / / www . slideshare . net /
PeterRobinson10/why- interfaces- do- not- and- should- not- matter-
for-scholarly-digital-editions.

Urbańczyk, Stanisław (1983). Die altpolnischen Orthographien des 16. Jahrhun-
derts. Ed. by Stanisław Urbańczyk and Reinhold Olesch. Vol. 37. Sla-
vistische Forschungen. Köln-Wien: Böhlau.


